更多>>精华博文推荐
更多>>人气最旺专家

十月二十五日

领域:新闻在线

介绍:邵旭还呼吁社会各界协同帮助残疾人融入社会生活,为残疾人掌握专业技能和实现就业提供支持。...

李岩红

领域:中国发展网

介绍:大象又高又大,身子像一堵墙,腿像四根柱子。w66.con,w66.con,w66.con,w66.con,w66.con,w66.con

利来娱乐国际最给利老牌网站是什么
本站新公告w66.con,w66.con,w66.con,w66.con,w66.con,w66.con
qq3 | 2019-01-24 | 阅读(736) | 评论(440)
PAGE第3课时 三角形中的几何计算课后篇巩固探究A组1.在△ABC中,AB=2,BC=5,△ABC的面积为4,则cos∠ABC等于(  )                ±C.-D.±解析由S=AB·BC·sin∠ABC,得4=×2×5sin∠ABC,解得sin∠ABC=,从而cos∠ABC=±.答案B2.某市在“旧城改造”工程中计划在如图所示的一块三角形空地上种植草皮以美化环境.已知这种草皮的价格为a元/m2,则购买这种草皮需要(  )元元解析由已知可求得草皮的面积为S=×20×30sin150°=150(m2),则购买草皮的费用为150a元答案C3.在△ABC中,a,b,c分别为角A,B,C的对边,若2b=a+c,B=30°,△ABC的面积为,则b等于(  )+++3解析由acsin30°=,得ac=6.由余弦定理,得b2=a2+c2-2accos30°=(a+c)2-2ac-3ac=4b2-12-63答案A4.在△ABC中,若AC=3BC,C=π6,S△ABC=3sin2A,则S△ABC=(解析因为AB2=BC2+3BC2-2×BC×3BC×32=BC2,所以A=C=π6,所以S△ABC=3sin2A=答案A5.若△ABC的周长等于20,面积是103,B=60°,则边AC的长是(  )解析在△ABC中,设A,B,C的对边分别为a,b,c,已知B=60°,由题意,得cos60°=a2+c答案C6.已知△ABC的三边分别为a,b,c,且面积S=a2+b2解析在△ABC中,S△ABC=a2而S△ABC=absinC,∴a2+b由余弦定理,得c2=a2+b2-2abcosC,∴cosC=sinC,∴C=45°.答案45°7.已知三角形的面积为,其外接圆面积为π,则这个三角形的三边之积等于     .解析设三角形的外接圆半径为R,则由πR2=π,得R=1.由S=absinC=abc4R=abc答案18.在△ABC中,角A,B,C所对的边分别为a,b,c,求证:ab-b证明由余弦定理的推论得cosB=a2cosA=b2右边=ca=2a2故原式得证.9.如图,在△ABC中,BC=5,AC=4,cos∠CAD=3132,且AD=BD,求△ABC的面积解设CD=x,则AD=BD=5-x.在△CAD中,由余弦定理,得cos∠CAD=42+(5∴CD=1,AD=BD=4.在△CAD中,由正弦定理,得ADsin则sinC=ADCD·1-∴S△ABC=AC·BC·sinC=×4×5×387=154710.导学号04994016若△ABC的三边长分别为a,b,c,面积为S,且S=c2-(a-b)2,a+b=2,求面积S的最大值.解S=c2-(a-b)2=c2-a2-b2+2ab=2ab-(a2+b2-c2).由余弦定理,得a2+b2-c2=2abcosC,∴c2-(a-b)2=2ab(1-cosC),即S=2ab(1-cosC).∵S=absinC,∴sinC=4(1-cosC).又sin2C+cos2C=1,∴17cos2C-32cosC+解得cosC=1517或cosC=1(舍去)∴sinC=817∴S=absinC=417a(2-a)=-417(a-1)2+∵a+b=2,∴0a2,∴当a=1,b=1时,Smax=417B组1.在钝角三角形ABC中,内角A,B,C所对的边分别为a,b,c,已知a=7,c=5,sinC=5314,则△ABC的面积等于(解析在钝角三角形ABC中,∵a=7,c=5,sinC=5314,∴AC,C为锐角,且cosC=1-sin2C=1114.由c2=a2+b2-2abcosC,得b2-11b+24=0,解得b=3或b=8.当b=8时,角B是钝角,cosB=a2+c2-b22ac=49+25-642答案C2.设△ABC的内角A,B,C所对的边分别为a,b,c,且3acosC=4csinA,若△ABC的面积S=10,b=4,则a的值为(  )解析由3acosC=4csinA,得asinA=4c3cosC.又由正弦定理asinA=csinC,得csinC=4c3cosC,∴tanC=,∴答案B3.在△ABC中,ab=60,S△ABC=153,△ABC的外接圆半径为3,则边c的长为    .解析∵S△AB【阅读全文】
w66.con,w66.con,w66.con,w66.con,w66.con,w66.con
r3f | 2019-01-24 | 阅读(62) | 评论(833)
讲到那政治革命的结果,是建立民主立宪政体。【阅读全文】
sc1 | 2019-01-24 | 阅读(913) | 评论(301)
RNA的种类、结构和功能考点一1、基本单位:核糖核苷酸2、结构:一般是单链,而且比DNA短,因此能够通过核孔,从细胞核转移到细胞质中。【阅读全文】
snr | 2019-01-24 | 阅读(898) | 评论(812)
当开放WebLogic控制台端口(默认为7001端口)时,T3服务会默认开启。【阅读全文】
oqd | 2019-01-24 | 阅读(39) | 评论(183)
掏了3万元,这个妈妈后悔了35岁的小海(化名)今年辞职,专门为参加编程竞赛的中小学生做辅导,目前有5个孩子跟着他学习。【阅读全文】
2km | 2019-01-23 | 阅读(222) | 评论(183)
总结是应用写作的一种,是对已经做过的工作进行理性的思考。【阅读全文】
upj | 2019-01-23 | 阅读(855) | 评论(773)
活动预热状态下:划线价格:划线的价格是商品在目前活动预热状态下的销售标价,并非原价,具体的成交价可能因用户使用优惠券等发生变化,最终以订单结算页价格为准。【阅读全文】
l1k | 2019-01-23 | 阅读(332) | 评论(368)
(三)知难而上,锐意进取,开拓计生工作新局面今年是我县进入省计生工作先进二档市县的最后一年,为了切实推动我县计生工作,确保顺利进入先进行列,根据县委的指示,结合我县实际,制定了更加严格的奖惩制度,完善和落实利益导向机制。【阅读全文】
w66.con,w66.con,w66.con,w66.con,w66.con,w66.con
un1 | 2019-01-23 | 阅读(453) | 评论(970)
1.概念:编码区非编码区非编码区启动子与RNA聚合酶结合位点终止子原核基因编码区非编码区非编码区启动子与RNA聚合酶结合位点外显子内含子终止子真核基因3、遗传信息、密码子、反密码子区别:遗传信息位于DNA分子的基因上面 密码子位于mRNA上面 反密码子位于tRNA上面考点四基因表达过程【阅读全文】
ojo | 2019-01-22 | 阅读(419) | 评论(83)
4、樱桃中铁含量很高,是特别适合女性吃的水果,有补虚养血的功效。【阅读全文】
ic0 | 2019-01-22 | 阅读(941) | 评论(629)
PAGE第2课时 等比数列前n项和的性质及应用课后篇巩固探究A组1.在各项都为正数的等比数列{an}中,首项a1=3,前3项和为21,则a3+a4+a5等于(  )                解析由S3=a1(1+q+q2)=21,且a1=3,得q+q2-6=0.因为q0,所以q=2.故a3+a4+a5=q2(a1+a2+a3)=22·S3=84.答案C2.已知数列{an}的前n项和Sn=an-1(a是不为零且不等于1的常数),则数列{an}(  )A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不是等差数列,也不是等比数列解析因为Sn=an-1符合Sn=-Aqn+A的形式,且a≠0,a≠1,所以数列{an}一定是等比数列.答案B3.已知{an}是等比数列,a1=1,a4=,则a1a2+a2a3+…+anan+1等于((1-4-n)(1-2-n)C.(1-4-n)D.(1-2-n)解析设公比为q,∵a4a1=q3=∵a1=1,∴anan+1=1×12n-1×1×12n=故a1a2+a2a3+a3a4+…+an=2-1+2-3+2-5+…+21-2n=1=(1-4-n).答案C4.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.意思是:一座七层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯(  )盏盏盏盏解析设第七层有a盏灯,由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,由等比数列的求和公式可得a(1-27答案B5.已知一个等比数列共有3m项,若前2m项之和为15,后解析由已知S2m=15,S3m-Sm=60,又(S2m-Sm)2=Sm(S3m-S2m)=Sm(Sm+60-S2m),解得Sm=3,所以S3m答案A6.在各项均为正数的等比数列{an}中,a1=2,a2,a4+2,a5成等差数列,Sn是数列{an}的前n项和,则S10-S4=   .解析依题意有2(a4+2)=a2+a5,设公比为q,则有2(2q3+2)=2q+2q4,解得q=2.于是S10-S4=2(1-答案20167.已知数列{an}满足a1=1,an+1·an=2n(n∈N*),则S2018=.解析∵an+1·an=2n(n∈N*),a1=1,∴a2=2,a3=2.又an+2·an+1=2n+1,∴an+2∴数列{an}的奇数项与偶数项分别成等比数列,公比为2,首项分别为1,2.∴S2018=(a1+a3+…+a2017)+(a2+a4+…+a2018)=2=3·21009-3.答案3·21009-38.已知一件家用电器的现价是2000元,如果实行分期付款,一年后还清,购买后一个月第一次付款,以后每月付款一次,每次付款数相同,共付12次,月利率为%,并按复利计算,那么每期应付款   元.(参考数据:≈,≈,≈,≈)解析设每期应付款x元,第n期付款后欠款An元,则A1=2000(1+)-x=2000×,A2=(2000×)×=2000×,……A12=2000×(++…+1)x,因为A12=0,所以2000×(++…+1)x=0,解得x=2即每期应付款175元.答案1759.在等差数列{an}中,a2+a7=-23,a3+a8=-29.(1)求数列{an}的通项公式;(2)设数列{an+bn}是首项为1,公比为|a2|的等比数列,求{bn}的前n项和Sn.解(1)设等差数列{an}的公差为d,依题意得a3+a8-(a2+a7)=2d=-6,从而d=-3.所以a2+a7=2a1+7d=-23,解得a1=-1所以数列{an}的通项公式为an=-3n+2.(2)由(1)得a2=-4,所以|a2|=4.而数列{an+bn}是首项为1,公比为4的等比数列.所以an+bn=4n-1,即-3n+2+bn=4n-1,所以bn=3n-2+4n-1,于是Sn=[1+4+7+…+(3n-2)]+(1+4+42+…+4n-1)=n(10.导学号04994050已【阅读全文】
yaf | 2019-01-22 | 阅读(335) | 评论(409)
——马克思核心探究:【主题3】明清时期中国科技未能发展成为近代科学的原因材料二 他们固然没有把个人与社会人分开,也没有把社会人与整个自然界分开。【阅读全文】
fyu | 2019-01-22 | 阅读(341) | 评论(405)
通过系列讲话的学习,发现自己存以下五方面的问题。【阅读全文】
1tg | 2019-01-21 | 阅读(317) | 评论(3)
(3)读取三个变量的坐标数值总和是100%。【阅读全文】
tdy | 2019-01-21 | 阅读(449) | 评论(86)
由于仅蛋白质分子中含有S,而P几乎都存在于DNA中(搅拌的目的是使吸附在细【阅读全文】
共5页

友情链接,当前时间:2019-01-24

利来国际娱乐平台 利来娱乐网 www.v66利来国际 利来网页 老牌利来
利来国际网站 利来国际w66备用 利来国际旗舰版 利来娱乐国际最给利老牌网站是什么
利来国际ag国际厅 www.w66.com 利来 利来国际旗舰版 利来国际w66最新 利来国际最老牌
利来国际w66.com 利来国际手机版 w66利来娱乐 利来国际w66.com 利来娱乐老牌
镇平县| 高密市| 阿克| 祁东县| 邹城市| 米脂县| 江津市| 翼城县| 普陀区| 新蔡县| 石柱| 大名县| 阿尔山市| 繁昌县| 海盐县| 原平市| 华亭县| 湘乡市| 曲沃县| 余江县| 乌鲁木齐市| 新竹市| 卓资县| 沅陵县| 大方县| 板桥市| 泸西县| 库车县| 体育| 漾濞| 定陶县| 龙海市| 嘉义市| 庐江县| 芦山县| 尚志市| 临夏市| 正定县| 滨州市| 凤山市| 延长县| http://m.08321418.cn http://m.10825339.cn http://m.31212605.cn http://m.18314762.cn http://m.62136388.cn http://m.85026751.cn